Starkey Research & Clinical Blog

On the Topic of Hearing Loss and Fatigue

Hornsby, B. & Kipp, A. (2016). Subjective ratings of fatigue and vigor in adults with hearing loss are driven by perceived hearing difficulties not degree of hearing loss. Ear and Hearing 37 (1), 1-10.

This editorial includes clinical implications of an independent research study and does not represent the opinions of the original authors.

In 2013, we reviewed an article from Dr. Ben Hornsby in which he reported on an initial foray into the fatiguing effects of listening to speech while managing a cognitively challenging secondary task (read here). The outcomes of his investigation suggested that use of hearing aids may reduce fatiguing effects of completing that secondary task. In more recent work, reviewed here, Drs Hornsby and Kipp assessed utility of standardized measures of fatigue among a large group of subjects with hearing loss.

Fatigue can be caused by a combination of physical, mental and emotional factors. Usually fatigue is temporary, resulting from periods of sustained physical or mental labor, and resolves during breaks, in between work days or on weekends. Intermittent fatigue has minimal effects on everyday life and health, but sustained fatigue, caused by unremitting work, stress or illness, has a variety of negative effects. Sustained and severe fatigue makes people less productive and more prone to accidents in the workplace (Ricci et al, 2007), reduces the ability to maintain concentration and attention, reduces processing speed, impairs decision-making abilities and may increase stress and burnout (vanderLinden et al, 2003; Bryant et al, 2004; DeLuca, 2005).

Though fatigue as a result of communication difficulty is commonly acknowledged by anecdotal reports, there has been little systematic examination of the relationship. As mentioned above, Hornsby (2013) found that hearing-impaired individuals experienced increased listening effort and mental fatigue that was mitigated somewhat by the use of hearing aids and other studies have suggested that the increased cognitive effort required for hearing-impaired individuals to understand speech may lead to subjective reports of mental fatigue (Hetu et al., 1988; Ringdahl & Grimby, 2000; Kramer et al., 2006; Copithorne, 2006). The purpose of Hornsby and Kipp’s study was to compare standardized, validated measures of fatigue to audiometric measures of hearing loss and subjective reports of hearing handicap.

The authors recruited subjects from a population of adults who sought help for their hearing loss from an Audiology clinic. There were 149 subjects, with a mean age of 66.1 years and a range from 22 to 94 years and mean pure tone average of 36.7dB HL.

Subjective fatigue was measured with two standardized scales: the Profile of Mood States (POMS; McNair et al., 1971) and the short form of the Multi-Dimensional Fatigue Symptom Inventory (MDFS-SF; Stein et al., 2004).  Two POMS subscales assessed general fatigue and vigor, which was described by words like “energetic” and “alert”.

A presentation summarizing the POMS can be found here

The MFSI-SF assessed vigor and four dimensions of fatigue – general, physical, emotional and mental. On both measures, subjects were asked to rate, on a 5-point scale, how well each item described their feelings during the past week.

The MDFS in long and short form can be found here

Audiometric data included pure tone thresholds in each ear at 500, 1000, 2000 and 4000Hz.  Perceived or subjective hearing handicap was measured with the Hearing Handicap for the Elderly (HHIE; Ventry & Weinstein, 1982) and the Hearing Handicap Inventory for Adults (HHIA; Newman et al., 1990).

Individuals 65 years or older completed the HHIE and those under 65 years completed the HHIA.

A version of the HHIA can be found here

The first set of analyses examined how the hearing-impaired subjects in the current study compared to normative data for the POMS and MFSI-SF.   Scores on vigor subscales were reverse coded and identified as “vigor deficit”, because unlike measures of fatigue or hearing handicap, high scores for vigor indicate less difficulty or less negative impact on the individual.  The authors found that the subjects in their study demonstrated significantly less vigor and slightly more fatigue than the subjects in the normative data. Furthermore, severe fatigue was reported more than twice as often and severe lack of vigor was reported more than four times as often compared to normative data. When subtypes of fatigue were examined, differences in vigor deficit were significantly greater than any of the other subscales, followed by general fatigue and mental fatigue which were both significantly greater than emotional or physical fatigue.

Hearing handicap was significantly related to both subjective fatigue and vigor ratings.  There were significant relationships among all HHIE/A scores (social, emotional, and total) and all subscales of the MFSI-SF scales.  Total score on the HHIE/A had a simple linear relationship with MFSI ratings in the physical and emotional domains. Total HHIE/A score had a nonlinear relationship with general, mental fatigue, and vigor deficit scores. In other words, low HHIE/A scores (little or no handicap) were not significantly associated with MFSI ratings, but as HHIE/A scores increased, there were stronger relationships. This nonlinear relationship indicates that as hearing handicap increased, there was a stronger likelihood of general fatigue, mental fatigue and lack of vigor.

Hornsby and Kipp drew three main conclusions from the study outcomes. First, the hearing-impaired adults in their study, who had contacted a hearing clinic for help, were more likely to report low vigor and increased fatigue than adults of comparable age in the general population.  They acknowledge that hearing loss was not specifically measured in the normative data and it is likely that there were some hearing-impaired individuals in that population. However, if hearing-impaired individuals were included in the normative data, it would likely decrease the significance of the differences noted here.  Instead, severe fatigue was more than twice as high in this study and severely low vigor was more than four times as high as in the normative population.

The second notable conclusion was that there was no relationship between degree of hearing loss and subjective ratings of fatigue or vigor. The authors hypothesized that higher degree of hearing loss would be associated with increased fatigue and vigor deficit but this was not the outcome. This observation presents a future avenue in which speech recognition ability could analyzed as a predictive factor to individuals reported fatigue.

Hearing aid use was not specifically examined in this study, yet it is likely to affect subjective ratings of fatigue and vigor. Several reports indicate that hearing aids, especially those with advanced signal processing, may reduce listening effort, fatigue and distractibility and may improve ease of listening. (Hallgren, 2005; Picou, et al., 2013; Noble & Gatehouse, 2006; Bentler, 2008). If study participants base their subjecting ratings of fatigue and vigor on how they function in everyday environments with their hearing aids, then the non-significant contribution of degree of hearing loss, as measured audiometrically, could be misleading.  Hearing aid experience and usage patterns should be evaluated in future work to ensure that hearing aid benefits do not confound the measured effects of the hearing loss itself.

The significant relationship between hearing handicap and subjective fatigue ratings underscores the importance of incorporating subjective measures into diagnostic and hearing aid fitting protocols.   Hearing care clinicians who counsel patients primarily based on audiometric results may underestimate the challenges faced by individuals who have milder hearing loss but significant perceived hearing handicap.  The HHIE/A and other hearing handicap scales, along with inquiries into work environment and work-related activities, can help us more effectively identify individual needs of our patients and formulate appropriately responsive treatment plans. Similar inquiries should be repeated as follow-up measures to evaluate how well these needs have been addressed and to indicate problem areas that remain.

References

Bentler, R.A., Wu, Y., Kettel, J. (2008). Digital noise reduction: outcomes from laboratory and field studies. International Journal of Audiology 47, 447-460

Bryant, D., Chiaravalloti, N. & DeLuca, J. (2004). Objective measurement of cognitive fatigue in multiple sclerosis. Rehabilitation Psychology 49, 114-122.

Copithorne, D. (2006). The fatigue factor: How I learned to love power naps, meditation and other tricks to cope with hearing-loss exhaustion. [Healthy Hearing Website, August 21, 2006].

DeLuca, J. (2005).  Fatigue, cognition and mental effort. In J. DeLuca (Ed.), Fatigue as a Window to the Brain (pp. 37-58). Cambridge, MA: MIT Press.

Eddy, L. & Cruz, M. (2007).  The relationship between fatigue and quality of life in children with chronic health problems: A systematic review. Journal for Specialists in Pediatric Nursing 12, 105-114.

Hallgren, M., Larsby, B. & Lyxell, B. (2005). Speech understanding in quiet and noise, with and without hearing aids. International Journal of Audiology 44, 574-583.

Hetu, R., Riverin, L. & Lalande, N. (1988). Qualitative analysis of the handicap associated with occupational hearing loss. British Journal of Audiology 22, 251-264.

Hornsby, B. (2013). The effects of hearing aid use on listening effort and mental fatigue associated with sustained speech processing demands. Ear and Hearing 34 (5), 523-534.

Hornsby, B. & Kipp, A. (2016). Subjective ratings of fatigue and vigor in adults with hearing loss are driven by perceived hearing difficulties not degree of hearing loss. Ear and Hearing 37 (1), 1-10.

Johnson, S. (2005). Depression and fatigue. In J. DeLuca (Ed.), Fatigue as a Window to the Brain (pp. 37-58). Cambridge, MA: MIT Press.

Kramer, S., Kapteyn, T. & Houtgast, T. (2006). Occupational performance: Comparing normally-hearing and hearing-impaired employees using the Amsterdam Checklist for Hearing and Work. International Journal of Audiology 45, 503-512.

McNair, D., Lorr, M. & Droppleman, L. (1971). Profile of Mood States. San Diego, CA: Educational and Industrial Testing Service. Retrieved from http://www.mhs.com/product.aspx?gr=cl&id=overview&prod=poms.

Noble, W. & Gatehouse, S. (2006). Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the SSQ. International Journal of Audiology 45, 172-181.

Picou, E.M., Ricketts, T.A. & Hornsby, B.W. (2013). The effect of individual variability on listening effort in unaided and aided conditions. Ear and Hearing (in press).

Pronk, M., Deeg, D. & Kramer, S. (2013). Hearing status in older persons: A significant determinant of depression and loneliness? Results from the Longitudinal Aging Study Amsterdam. American Journal of Audiology 22, 316-320.

Ricci, J., Chee, E. & Lorandeau, A. (2007). Fatigue in the U.S. workforce: Prevalence and implications for lost productive work time. Journal of Occupational Environmental Medicine  49, 1-10.

Ringdahl, A. & Grimby, A. (2000). Severe-profound hearing impairment and health related quality of life among post-lingual deafened Swedish adults. Scandinavian Audiology 29, 266-275.

Stein, K., Jacobsen, P. & Blanchard, C. (2004). Further validation of the multidimensional fatigue symptom inventory – short form. Journal of Pain and Symptom Management 27, 14-23.

vanderLinden, D., Frese, M. & Meijman, T. (2003). Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychologica (Amst) 113, 45-65.

Ventry, I. & Weinstein, B. (1982). The Hearing Handicap Inventory for the Elderly: a new tool. Ear and Hearing 3, 128-134.

Weinstein, B., Sirow, L. & Moser, S. (2016).  Relating hearing aid use to social and emotional loneliness in older adults. American Journal of Audiology 25, 54-61.